博客
关于我
极客战记 魔幻的考试(magic exam)通关代码
阅读量:326 次
发布时间:2019-03-04

本文共 1324 字,大约阅读时间需要 4 分钟。

如何完美通关魔法考试关卡?以下是本关的攻略与技巧

这个关卡考验你的观察力和策略选择能力。在每个关卡中,你需要找到特定的X标记,通过合理的技能使用来获取最佳成绩。本关的关键在于合理分配技能使用,同时注意关卡中的特殊机制。

  • 合理分配技能
    • 对于不同的敌人和物品,你需要选择最适合的技能来最大化金币收益
    • 判断物品类型时,始终使用小写字母,避免因为大小写问题导致识别失败
    1. 关卡特殊机制
      • 最后一个房间的特殊机制需要特别注意。在这里,你需要通过使用grow技能来增加自己的血量,才能避免中毒死亡同时获取最后四枚金币

      代码示例如下:

      def healFriendOrEliminateEnemyOrPickItem():    friend = hero.findNearestFriend()    enemy = hero.findNearestEnemy()    item = hero.findNearestItem()    if friend:        if friend.type == "soldier":            hero.cast("heal", friend)        if friend.type == "goliath":            hero.cast("grow", friend)        if friend.type == "paladin":            hero.cast("regen", friend)    if enemy:        if enemy.type == "ogre":            hero.cast("force-bolt", enemy)        if enemy.type == "brawler":            hero.cast("shrink", enemy)        if enemy.type == "scout":            hero.cast("poison-cloud", enemy)    if item:        if item.type == "potion":            hero.moveXY(item.pos.x, item.pos.y)        else:            hero.cast("grow", hero)            hero.moveXY(item.pos.x, item.pos.y)            for i in range(4):                hero.moveXY(18 + i * 16, 40)                healFriendOrEliminateEnemyOrPickItem()                hero.moveXY(18 + i * 16, 24)                healFriendOrEliminateEnemyOrPickItem()

      希望以上内容能为你提供有价值的参考,帮助你在关卡中取得优异成绩。

    转载地址:http://apuh.baihongyu.com/

    你可能感兴趣的文章
    NIO笔记---上
    查看>>
    NIO蔚来 面试——IP地址你了解多少?
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>
    NISP国家信息安全水平考试,收藏这一篇就够了
    查看>>
    NIS服务器的配置过程
    查看>>
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NiuShop开源商城系统 SQL注入漏洞复现
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 模型中的偏差和公平性检测
    查看>>
    Vue3.0 性能提升主要是通过哪几方面体现的?
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>